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Abstract—The mechanical behavior of polyurethane rubber filled with granular potassium chloride was
investigated by subjecting tubular specimens to oscillatory torsion. The response of the material was studied
to variation of frequency and amplitude of the imposed strain as well as to variation of the temperature.

Beside the measurement of the storage and loss moduli the normal forces are observed and the second-
order moduli of cross-elasticity, cross-viscosity and cross-visco-elasticity are evaluated.

INTRODUCTION

CHARACTERIZATION of the mechanical response of highly filled elastomers is usually
based on the results of creep or relaxation tests combined with those of free transient or
resonant stationary oscillations of small amplitudes, evaluated on the basis of the assump-
tions defining linear visco-elastic thermo-rheologically simple media. In the present
investigation an attempt is made to use for this purpose forced cyclic shear with con-
trolled moderate strain amplitudes under such experimental conditions that not only
the two first-order parameters (storage and loss moduli) of the linear response but also
three additional second-order parameters resulting from the tensorial non-linearity
could be recorded and evaluated. The validity of the concept of the simple temperature
shift was also explored and the temperature-dependence of the second-order parameters
established over a moderate temperature range. The visco-elasticity of the second-order
response accompanying the visco-elastic response in shear was clearly demonstrated.

The material used was an inert model of a solid propellant consisting of polyurethane
rubber filled with granular potassium chloride which has mechanical properties similar
to those of the oxidizer of the live propellant; it was supplied by Aerojet General. The
filler is made up of about 47 %, potassium chloride and 6 % aluminum powder by volume.
Microscopic examination of a freshly cut surface indicates the size of aluminum particles
to be below 40 u, while the potassium chloride particles range up to 200-300 p. The
predominant particle size appears to be of the order of 100 p.

A previous study of the same material under conditions of creep and relaxation had
shown [1] that the propellant behaves as a linear visco-elastic medium in the range of
uniaxial strains up to 4 per cent and in shear up to 8 per cent and that the bulk modulus
is of the order of 5 x 10° psi while Young’s modulus at room temperature is below 103 psi,
and varies only slowly with the strain rate. Thus it appeared reasonable to assume in-
compressibility of the material in this investigation.

1. SPECIMENS AND INSTRUMENTATION

The experiments were performed on the Weissenberg Rheogoniometer [2] from which
555
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the cone and platten were removed to accept the circular plate holders of the specimens
of the dummy propellant.

There were several considerations influencing the size and production technique of
the specimens. Because of the high concentricity required, the tubular specimens were
made by cementing carefully machined circular holders to a slab of the material ground
to uniform thickness. After the cement was set, the specimens were cut out on a band
saw, leaving substantial margins around the holders for further machining. These specimen
blanks were then hollowed out on a lathe to the required inner diameter and the upper
holders were then cemented concentrically to the free ends using reamed holes and
mandrils for guidance. Finally, the whole unit mounted on the mandril was inserted
between centers of a lathe and the outer surface properly finished.

The dimensions of the specimens, o.d. = 2-125in. and i.d. = 1-875 in. were determined
experimentally. On the one hand, the size of the filler particles required a minimum
thickness, to allow the assumption of a homogeneous continuum and to diminish the
effect of surface defects caused by the breaking and ripping out of filler particles in
machining the specimens. On the other hand, the wall thickness had to be small in
relation to the radius to permit the assumption of a uniform stress distribution, but
sufficiently large to prevent local instability. With the dimensions as chosen the height
of the specimen could be varied from 0-250in. to about 2-:00in. For this part of the
investigation, however, a height of 0-50 in. was used.

The Rheogoniometer as used is schematically shown in Fig. 1. Its basic parts are two
plattens A and B. The upper platten A is fixed through a torque bar to a slide and thus
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Fi1a. 1. Weissenberg Rheogoniometer.
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to the frame of the machine. The twist of the torque bar, which is proportional to the
applied torque, is picked up by a differential transformer T and the signal fed into one
channel of a double channel x-y recorder. The whole slide assembly can be moved up
and down and the distance between the two plattens can thus be arbitrarily set.

The lower platten B can either be rotated at a uniform rate, being driven through a
worm on the shaft F and a gear attached to the collet G, or given an oscillatory motion
of variable amplitude by translationary motion of the shaft F imparted to it by a rotating
excenter E, or both motions can be combined. Both the rate of uniform rotation and the
frequency of the oscillatory motion can be varied in small steps over a wide range by
gear box controls.

As the lower platten is connected to the driven collet G by a special diaphragm C,
the platten, although rigidly attached in rotational motion, can move within certain
limits in the vertical direction. This motion, however, is resisted by a vertical rod D
bearing on a flat spring H. By a proper choice of spring stiffness, the deflection of the
spring can be kept fairly small (approx. 1077 in.); it is measured by the differential
transformer N. The transformer output is then amplified and fed into the second channel
of the recorder.

For the oscillatory mode of operation the deformation of the sample is determined
from the translationary motion of the driving shaft F. Its momentary position is sensed
by the differential transformer R and its output fed into the x channel of the recorder.

The specimen assembly, including the lower and upper platten of the machine, can
be enclosed by a chamber through which cooled or warmed air can be circulated, and
thus the specimen can be brought to a desired test temperature.

2. TEST RESULTS

The oscillatory mode of operation of the Rheogoniometer appears most suitable for
this investigation as the dynamic response of the propellant could be studied as a function
of frequency and the linearity of the response could be easily checked by variation of the
amplitude of the imposed deformation, as shown in Fig. 6. For clarity of diagrams, only
two amplitudes are used.

The use of specimens of standard dimensions allowed calibration of the instrument
in terms of stress and strain and thus stress-strain curves could be directly obtained for
the various test conditions. In evaluating these diagrams, however, corrections are
necessary as the indicated values contain also contributions from the deformation of the
instrument. The nominal shear strain includes also the twist of the torque bar and the
normal force is decreased because of the deflection of the spring resisting it.

The twist of the torque bar is proportional to the torque induced in the specimen and
the correct strain is obtained by subtracting the strain due to this twist. This can be easily
done in the recorded stress—strain diagrams by rotating the stress axis by a proper
angle o, and then using the skewed axes as a basis for evaluation of the moduli, as shown
in Fig. 2.

The correction for the deflection of the spring measuring the normal force can be
made by repeating the measurements with a spring of a different stiffness and then
evaluating the normal stress by extrapolation to zero deflection. Or the stress from a
single spring measurement is corrected by the additional stress needed to push the
specimen to zero extension. This additional stress is proportional to the compression
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modulus and thus its values have to be known for all the test conditions. In both cases
it is desirable to keep the deflection of the spring as low as possible as this results in more
accurate initial values. Deflections of the order of 10~ > appear to be a practical limit, as
with further decrease, the imperfections of the contact surfaces and .the temperature
effects constitute an appreciable portion of the measured deflection. The temperature
effects especially proved to be troublesome in the present investigation. Improvement is
necessary in the temperature control and the steel rod transferring the normal force to
the spring has to be replaced by one made of invar, as a temperature change of 0-5°C
results in change of length of the same order of magnitude as the measured deflection.

Wwd = v);zG'sinW = wAB

FiG. 2. Evaluation of storage and loss moduli from a typical shear stress—strain diagram in
reversed torsion.

Some of the recorded stress—strain diagrams corrected for the normal force spring
deflection and showing the correction angle « are shown in Fig. 3 through Fig. 7. From
these diagrams and from diagrams not shown the values of the storage modulus and of
the loss modulus in shear were evaluated and are presented as functions of log1/w in
Fig. 8. For comparison, a relaxation modulus in shear at room temperature obtained in
a previous investigation is also shown in this diagram.
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F1G. 3. Recorded shear stress—strain and normal stress-shear strain diagrams in reversed torsion
at +22°C.
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F1G. 4. Recorded shear stress—strain diagrams in reversed torsion at —25°C.
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F1G. 6. Recorded shear stress—strain and normal stress—shear strain diagrams in reversed torsion for
two amplitudes of the imposed cyclic strain at +22°C.
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F1G6. 7. Recorded shear stress—strain and normal stress—shear strain diagrams in reversed torsion at
+22°C and —30°C.
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F1G. 8. Measured storage and loss moduli as functions of log l/w.
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3. INTERPRETATION OF TEST RESULTS

As the propellant behaved in shear as an incompressible linear visco-elastic medium
in the range of the test conditions, the interpretation of the test results was based on
linear visco-elastic analysis.

Under zero initial conditions, the constitutive equations in the deviatoric form are
given by equation

de“-(u)
deit)
du "

;1) =f 2G(t—u) 1
0

where

"dG
G(t) =J o exp(—t/r)dr (2)

is the relaxation modulus in shear, 7 the relaxation time, (t—u) the elapsed time, and
dG/dt = f() the intensity of the relaxation spectrum.
Equation (1) solved for the imposed oscillatory motion 2e,, = y, sin wt gives

O

. ? wt? dG
5.5t = yo{sm wtj et & dé dt+cos wtf w—Tz——dr

1+ w?t? dt 1+ w22 dt
“ wr dG
J‘ m dz eXp( t/T) d‘f} (3)
where
w?r?
G'lw) f 1+ w0?t? dr de )
and
* wt dG
” = _d
G"() L T g & 5)

are the storage and loss moduli in shear, respectively, and are the measurable quantities.

Because of the wide range of the function f(r) = dG/dr the alternate expressions
containing the intensity of the relaxation spectrum as a function of In t are more often
used ; thus

G@t) = Jm H(ln t)exp(—t/t)dInz 6)
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© wr?

G'(w) = J e H({nt)dIlnzt )
© w1

G'(w) =j P H(lnt)dIn7. 8)

The intensity of the relaxation spectrum H(In ) can in principle be determined from
any of the three equations relating it to the measured quantities G(t), G'(w) or G"(w),
but in this investigation the approximation method of Alfrey as described by
Leaderman [3] using equation (7) appeared to be most suitable.

Substitution of w = exp(—n) and t = exp(z) into equation (7) leads to

1+exp[2(n—2z)] dz

() =j HE)— o)

where g'(n) is the storage modulus expressed as a function of In 1/w.
The rate of change of g'(n) with respect to n is

dg'(n) _ * 2 exp[2(n—2)]
dn j_ wH(z) {1+exp[2(n—2z)]}?

(10)

and as for a given value of n the function multiplying H(z) in the integrand has a rather
limited range, and if H(z) is a slowly varying function in this range, H(z) can be replaced
by a constant H(n) and the integration easily performed. Equation (10) then becomes

dg'(n)
o= —H). (11)

The intensity of the relaxation spectrum is equal to the negative slope of the storage
modulus when both are plotted as functions of In 1/w.
In a similar fashion, the equation
dg(m) = —H(m) (11a)
dm
is obtained, where the intensity of the relaxation spectrum is related to the rate of change
of the relaxation modulus in shear, when both are plotted as functions of In 1.

If either the storage modulus or relaxation modulus were known over the whole
range of the relaxation spectrum, the relaxation spectrum would be determined by the
evaluation of the derivative of either of the moduli curves. The time range of tne ob-
served quantities, however, is limited by the experimental technique used and even a
combination of several techniques does not, generally, give a complete coverage. More
often only one or two experimental techniques are employed and the range is extended
by variation of temperature and by connection of the “‘reduced” segments covering the
limited time range of observation into a master curve using one of the time-temperature
relations. Implicit in this time-temperature superposition is the assumption that all the
relaxation or retardation mechanisms have the same time-temperature dependence,
which in a case of a wide distribution of relaxation time does not appear to be reasonable.
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4. TEMPERATURE SHIFT

If the experimental results presented in Fig. 8 are reduced to any reference tem-
perature, the resulting curves cannot be shifted into a complete coincidence over the
whole region of overlap, indicating that there is also a change of shape associated with
the temperature change. Thus the possibility of the variation of the time-temperature
relationship, even over the limited portions of the relaxation spectrum, must be admitted.
In view of this, the concept of the simple spectrum shift on the logarithmic time scale [4]
evaluated from the Arrhenius equation, and the Williams, Landel, Ferry [5] time—tem-
perature relation are re-examined and modified.

Denoting t/7o)r, = k and 1/74]; = A, where 1, is an arbitrarily chosen unit of relaxa-
tion time scale, T is the Kelvin temperature and Ty the reference temperature, Alfrey’s
relation [6] can be written as

Ini=lnk+Q/RU/T—1/T) (12)

where Q is the activation energy and R the gas constant. By replacing Q/R by a function
U(ln k) the time-temperature relation can be modified to permit its variation with the
relaxation time. Furthermore, since the temperature dependence of the relaxation time
on 1/T is in many cases non-linear and can be fairly well expressed as function of
(1/T)* [7), the relation (12) can be written in a more general form

InA = Inx+ Ulln )F(T, T). (13)

The Williams, Landel, Ferry relation expresses the dependence of the logarithm of
the ratio of all mechanical and electrical relaxation times at temperature T to their
values at a reference temperature Ty. In the notation used it can be written as

CG(T-T)

l —':1 e .
M=M= "o rT-1,

(14)
Although these authors in comparing their formula with other time-temperature
relations, related it also to the viscosity-free volume relation of Doolittle [8], the com-
parison here is made with the free volume concept as modified by Turnbull and Cohen [9].
In this concept the free volume is related to the two regimes of the thermal expansion
of the amorphous phase and thus the viscosity-free volume relation is replaced by a
viscosity-temperature relation.

In molecularly simple substances the transition from liquid to glass is manifested by
marked changes in viscosity, specific heat, and thermal expansion coefficient within a
narrow temperature interval centering about a glass temperature 7,. The dependence
of the specific volume on temperature is shown schematically below.

\

Specific volume-temperature relation.
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The specific volume of the amorphous phase in the liquid and glassy state is shown by a
solid line, and the dashed line shown corresponds to a hypothetical specific volume
corresponding to the crystalline phase. Also shown are the corresponding coeflicients
of thermal expansion. The free volume ¥; is specified as the difference, between the
specific volume ¥ and the occupied volume V,, corresponding to the crystalline phase.
For temperature T > T, the respective volumes are:

V= Voota(T-Ty),
Vo = Voo +as(T —Ty),
Vi=V—V, = (a,—a)(T-T).

Substitution into the Doolittle formula n = A4 exp(BV,/V}) leads to

a
Iny=InA+B—=—+B % .
( OtL—aS+ oy — &g T—"I;)

(15)

The logarithm of the ratio of 5 at temperature T and at a reference temperature Ty is
easily evaluated and can be written as
- BV, 1 T-T

A
In-=ha,=ln—= .
koo Hrx ap—og Tp—=Ty T—Ti+(Tlr—Tp)

(16)

Equation (16) is equivalent to equation (14) with

a—os =T

C1=

and C, = T — T,

Equation (15) shows that the logarithm of viscosity depends linearly on 1/T —T,,.
However, the temperature Tj is not known before hand for any system and has to be
found by trial and error. Miller [10] has investigated the data of Fox and Flory on
viscosity of polystyrene and polyisobutylene fraction and found that .the constant
BVyo/o — g depends on the molecular weight, increasing with molecular weight for low
molecular weights and approaching a constant for large molecular weights.

If this variation is attributed to the length of the molecular chains or segments in
motion due to the applied stress or strain, then the behavior of any system must reflect
the distribution of chains lengths or segments in a distribution of time-temperature
dependences. Equation (16) should then indicate this variation by replacing the constant
BVyo/op —ug by a function of In « and thus this can be written as

InA = Inx+ U{ln k)F(T, Ty) amn

which is the same as equation (13).

If we now denote the intensity of the spectrum of relaxation times at the reference
temperature T by H(In x) = dG/d In x and at the temperature T by H,(In 1) = dG/d In 4,
these two can be compared at T, if H,(In 2) is “reduced” in the usual way; thus

dG  diTy dG dIni_ &'T;
dlnk dT dlnidink  dT

_d U(ln )
dink

H,(nx) = Hy(In %) {1 + F(T, TR)} (18)
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where dy is the density at Ty, d the density at T, and d In A/dInk is evaluated from
equation (17). Equation (18) can be rewritten as

H,(Inx) dT

Hy(ni) = 1+[dU(n k)/d In k]F(T, Tp) dx Ty

(19)

This equation shows that the temperature change from Ty to T is equivalent not only to
a shift of the spectrum as determined by equation (17) but also the intensity of the
spectrum is doubly affected. The first influence accounts for the proportionality of the
moduli to absolute temperature while the second, responsible for the change of shape,
is a measure of the variation of the rate at which the different portions of the spectrum
shift with change of temperature.

5. EVALUATION OF EXPERIMENTAL RESULTS

In the evaluation of the experimental results shown in Fig. 8, the curves showing the
dependence of the storage modulus on log 1/w at the various test temperatures were first
reduced to the reference temperature and drawn on a common time scale. From hori-
zontal lines drawn at arbitrarily chosen values of G'(w) the shift factors corresponding to
the various temperature changes were determined, and the product U(lnx) F(T, Ty)
" evaluated. If the experimental data were sufficiently extensive both functions could be
determined ; however, in this case, because of the limited coverage, the temperature depen-
dence was assumed to be linear with 1/T and equation (13) with F(T, Tg) = (1/T —1/T)
was used. The function U(ln k) was then readily evaluated and the portions of the spectra
corresponding to the various G'(w) curves determined by equation (11). As these portions
of the spectra were derived from data already reduced, they were shifted into proper
positions in accordance with equation (16), but omitting the reduction factor d7/d, T,

From the spectrum thus derived both the storage modulus and the loss modulus, as
well as the relaxation modulus, were recomputed and are shown with the spectrum in
Fig. 9.

The extension of the time scale is relatively modest but the agreement with test results
obtained in another investigation appears to be rather good. The test results shown as
dots in the ranges of 1072 to 1073 sec were obtained from free vibrations of sandwich
shear beams, those around 1sec are from torsion pendulum measurements, and the
open circles are relaxation measurements obtained previously.

6. SECOND-ORDER EFFECTS

Torsion of wires, circular bars or tubes appears to be the most suitable method for
we study of second order or “cross” effects in solid or pseudo-solid materials as the
torsion induced changes of length, or the rise of normal forces necessary to maintain the
specimens at constant length can be observed as a separate phenomenon.

The second-order effects in liquids have been extensively studied and there is a sub-
stantial literature on this subject [11], in solids these studies were limited to the elastic
range so far and very little is known about such effects in visco-elastic materials.
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FIG. 9. Spectrum of relaxation times derived from the experimental results and the computed storage
and loss moduli.

Second-order phenomena may be the result of nonlinearity of the strain—displacement
relations, termed “‘geometric nonlinearity” or the result of nonlinearity of the constitutive
tensor relations, termed ‘‘tensorial nonlinearity” [12]. In the first case the second-order
effects are governed by the parameters of the first-order phenomena, while in the second
case, the phenomena are governed by specific second-order material parameters which
must be determined by suitable experiments,

The theory of second-order effects in isotropic incompressible elastic media due to
nonlinearity of the strain—displacement relations was developed by Rivlin [13], while
Reiner [14] formulated the tensorial relations for isotropic viscous fluids and isotropic
clastic solids where the second order effects, the cross-viscosity and cross-elasticity are
due to nonlinear tensorial relations. Reiner’s concept of tensorial nonlinearity has been
in turn applied to simple visco-elastic media by Rivlin and Ericksen [15]. The significance
of the two approaches to second order phenomena is discussed in detail by Ronay and
Freudenthal [12] and it is shown that while both the “geometric”” and the “tensorial”
nonlinearity contribute to the second order effects in solids, the “geometric” contribution
can be neglected for small strains.

The Rivlin—Ericksen constitutive equation for a simple isotropic visco-elastic medium
expresses the stress matrix T'as the sum of matrix polynomial in two kinematic matrices,
the strain matrix E and the deformation rate matrix D, and on the basis of a generalization
of-the Cayley—Hamilton theorem, this sum is reduced to the following form



568 B. ALBRECHT and A. M. FREUDENTHAL

T= oy T+ o, E+o,E*+ayD+o,D?
+os[ED+ DE]+ a4 E*D + DE?] (20)
+o,[ED*+ D*E]+ag[ E*D? + D*E?)
where the a; are polynomials in the invariants of the matrices appearing in this equation.
For small strains equation (20) can be written in tensorial form as
Gij = 0lg0;j+ 01 &5+ 0a8ibyj+ U3y + gy
+ s eyt Euti] + tol Eutinby t Eutiaty] (21)
+ o7 e+ Enbitri] + YalEibirCimbmg + EikriBimEm;l-

The nine coefficients in equation (21) can, in principle, be determined by experimental
methods, but the difficulties increase with the degree of the terms involved as each
successive power decreases the order of the measured quantities. Thus it is reasonable
to reduce equation (21) to first- and second-degree terms only by setting og = o7 = ag = 0.
With this limitation and the introduction of the incompressibility condition equation (21)
can be rewritten as

S;j = 0lg€;;+0z€;;

Eaif L. €k
+o, (eikekj—é,-jw)+a4(eikekj—5 o k“) (22)

3 Y3

. Eatba | . Eakbia
+ 0(5 (eikeky - 5,} 3 _"+ eikekj - 5ij “3

where

_5 gaa

g
0—5 x and eij = Si ij3v'

Sij =0 ij?

J
In this equation the coefficients a,, o, and a5 are the second-order material parameters,
and if they are zero equation (22) reduces to the constitutive equation of a linear in-
compressible Kelvin body. It is worth noting that if shear strain ¢y, M # N, is imposed,
there will be no contribution to o,y from the second-order terms, while a,,,, and oyy
will have contributions from the second order terms only. On the other hand, if uniaxial
strain &,q,, is imposed, the contributions from the second order terms for small strain
will hardly be measurable in relation to the primary effects.
Denoting the shear strain imposed by the Rheogoniometer ¢,, = 3y, sin wt and the
corresponding shear stress rate &,, = 1y, cos wt, the normal stress ¢, is

o . o 20 .
6, = fy(z, s1n2a)t+z4w2y§ coszwt+~4—5wy(2, sin wt cos wt (23)

where a,/4, a,w?/4 and 2asw/4 are the cross-elasticity, cross-viscosity, and cross-
elasticity-viscosity moduli respectively. Equation (23} can be rewritten as

o w?

4

2
(1 +cos 201) +1 “j“’ sin 2wt} (23a)

1
611 = Eyé{%f(l —cos 2wt) +
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showing that circular frequency of all the components of normal stress is double the
frequency of ihe imposed shear strain. It also shows that the amplitude of the normal
stress varies with the square of the amplitude of the imposed shear strain. The recorded
stress—strain diagrams shown in Fig. 6 clearly show this behavior. In Fig. 10, the normal
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F16. 10. Components of second order normal stress in tubular specimen in cyclical torsion imposing
shear strain y = y, sin wt.

stress o, and its three components as expressed by equation {23a) are shown as functions
of 2wt/n. For ease of presentation it was assumed that: a,0? = «,/2 and 2a;0 = a,/4.
The corresponding stress-strain diagrams together with the primary effects are shown in
Fig. 11.

Although all the recorded experimental stress-strain diagrams show the presence of
all three components of the normal thrust, only the first two are sufficiently reliable for
evaluation, and the evaluated cross-clasticity modulus «,/4 = G, and the cross-viscosity
modulus a,w?/4 = G are shown as functions of log 1/w in Fig. 12. Both moduli G, and
G are frequency and temperature dependent and probably could be characterized by
continuous spectra; however the experimental results accumulated so far are limited
and are insufficient for such characterization,
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Résumé—Le comportement mécanique du caoutchouc polyurethane empli de chlorure de potassium granulaire
a été investigué en faisant subir 4 des specimens tubulaires une torsion oscillatoire. La réaction du materiel
a été étudiée a des variations de fréquences et d’amplitude de la contrainte imposée aussi bien qu’a des variations
de température.

A part le mesurage de I’'emmagasinement et la perte de modules, les forces normales sont observées, et les
modules de second ordre d’élasticité transversale, de viscosité transversale et de visco-élasticité transversale
sont évaluées.

Zusammenfassung—Das mechanische Verhalten von Kunststoff Gummi, gefiillt mit Kaliumchlorid wurde
untersucht bei Unterwerfung von rohrenférmigen Proben zu Schwingungsdrehungen. Die Empfinglichkeit
des Materials fiir Frequenzen und Schwingungsverinderungen der auferlegten Beanspruchung, wie auch fiir
Temperaturveranderungen wurde untersucht. Ausser den Messungen der Speicherung und von dem Verlust
Modul, die normalen Krifte wurden beobachtet und das Modul zweiter Ordnung von Querelastizitit, Quer-
viskositdt und Querfliessverhalten wurde bewertet.

AGcTpaxT-—Mexannyeckoe MNOBedEHUE TONNYPETAHOBOH PE3MHbI, HANONHEHHOW TI'DaHYIMPOBAHHBIM
XJIOPMCTHIM KaNHEM MCCIENOBANOCh MOABEPraHHeM LIMIIHHAPHYECKUX 00pa3uoB koneGaTeIbHOMY Xpy-
yeHu1o. M3yuanoch pearupoBaHue Martepdaa Ha M3MEHEHHs 4YacTOThbl M AMIUTUTYABI NPHIOKEHHOTO
HanpmkeHus-aedhopMalnK, Takxke, Kak Ha H3IMEHEHHE TEMIIEPATYPhI.

Kpome M3MepeHns Moay.iell HAKOMIEHHS. M NOTEPH HAGIIOOANMCh HOPMASIbHBIE CWIbl M BbIMHCIIEHEI
MOIYJIM BTOPOIo MOPSAKA-—IIONEPEYHON| YNPYrOCTH, NIONEPEYHOR BA3KOCTH U NOMEPEYHOI BA3KO3NACTHY-
HOCTH.



